37 resultados para Job Demands-Resources model

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A model comprising several servers, each equipped with its own queue and with possibly different service speeds, is considered. Each server receives a dedicated arrival stream of jobs; there is also a stream of generic jobs that arrive to a job scheduler and can be individually allocated to any of the servers. It is shown that if the arrival streams are all Poisson and all jobs have the same exponentially distributed service requirements, the probabilistic splitting of the generic stream that minimizes the average job response time is such that it balances the server idle times in a weighted least-squares sense, where the weighting coefficients are related to the service speeds of the servers. The corresponding result holds for nonexponentially distributed service times if the service speeds are all equal. This result is used to develop adaptive quasi-static algorithms for allocating jobs in the generic arrival stream when the load parameters are unknown. The algorithms utilize server idle-time measurements which are sent periodically to the central job scheduler. A model is developed for these measurements, and the result mentioned is used to cast the problem into one of finding a projection of the root of an affine function, when only noisy values of the function can be observed

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Global change in climate and consequent large impacts on regional hydrologic systems have, in recent years, motivated significant research efforts in water resources modeling under climate change. In an integrated future hydrologic scenario, it is likely that water availability and demands will change significantly due to modifications in hydro-climatic variables such as rainfall, reservoir inflows, temperature, net radiation, wind speed and humidity. An integrated regional water resources management model should capture the likely impacts of climate change on water demands and water availability along with uncertainties associated with climate change impacts and with management goals and objectives under non-stationary conditions. Uncertainties in an integrated regional water resources management model, accumulating from various stages of decision making include climate model and scenario uncertainty in the hydro-climatic impact assessment, uncertainty due to conflicting interests of the water users and uncertainty due to inherent variability of the reservoir inflows. This paper presents an integrated regional water resources management modeling approach considering uncertainties at various stages of decision making by an integration of a hydro-climatic variable projection model, a water demand quantification model, a water quantity management model and a water quality control model. Modeling tools of canonical correlation analysis, stochastic dynamic programming and fuzzy optimization are used in an integrated framework, in the approach presented here. The proposed modeling approach is demonstrated with the case study of the Bhadra Reservoir system in Karnataka, India.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fuzzy waste-load allocation model, FWLAM, is developed for water quality management of a river system using fuzzy multiple-objective optimization. An important feature of this model is its capability to incorporate the aspirations and conflicting objectives of the pollution control agency and dischargers. The vagueness associated with specifying the water quality criteria and fraction removal levels is modeled in a fuzzy framework. The goals related to the pollution control agency and dischargers are expressed as fuzzy sets. The membership functions of these fuzzy sets are considered to represent the variation of satisfaction levels of the pollution control agency and dischargers in attaining their respective goals. Two formulations—namely, the MAX-MIN and MAX-BIAS formulations—are proposed for FWLAM. The MAX-MIN formulation maximizes the minimum satisfaction level in the system. The MAX-BIAS formulation maximizes a bias measure, giving a solution that favors the dischargers. Maximization of the bias measure attempts to keep the satisfaction levels of the dischargers away from the minimum satisfaction level and that of the pollution control agency close to the minimum satisfaction level. Most of the conventional water quality management models use waste treatment cost curves that are uncertain and nonlinear. Unlike such models, FWLAM avoids the use of cost curves. Further, the model provides the flexibility for the pollution control agency and dischargers to specify their aspirations independently.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, pattern classification problem in tool wear monitoring is solved using nature inspired techniques such as Genetic Programming(GP) and Ant-Miner (AM). The main advantage of GP and AM is their ability to learn the underlying data relationships and express them in the form of mathematical equation or simple rules. The extraction of knowledge from the training data set using GP and AM are in the form of Genetic Programming Classifier Expression (GPCE) and rules respectively. The GPCE and AM extracted rules are then applied to set of data in the testing/validation set to obtain the classification accuracy. A major attraction in GP evolved GPCE and AM based classification is the possibility of obtaining an expert system like rules that can be directly applied subsequently by the user in his/her application. The performance of the data classification using GP and AM is as good as the classification accuracy obtained in the earlier study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have shown that buffering packets in DRAM is a performance bottleneck. In order to understand the impediments in accessing the DRAM, we developed a detailed Petri net model of IP forwarding application on IXP2400 that models the different levels of the memory hierarchy. The cell based interface used to receive and transmit packets in a network processor leads to some small size DRAM accesses. Such narrow accesses to the DRAM expose the bank access latency, reducing the bandwidth that can be realized. With real traces up to 30% of the accesses are smaller than the cell size, resulting in 7.7% reduction in DRAM bandwidth. To overcome this problem, we propose buffering these small chunks of data in the on chip scratchpad memory. This scheme also exploits greater degree of parallelism between different levels of the memory hierarchy. Using real traces from the internet, we show that the transmit rate can be improved by an average of 21% over the base scheme without the use of additional hardware. Further, the impact of different traffic patterns on the network processor resources is studied. Under real traffic conditions, we show that the data bus which connects the off-chip packet buffer to the micro-engines, is the obstacle in achieving higher throughput.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optimal allocation of water resources for various stakeholders often involves considerable complexity with several conflicting goals, which often leads to multi-objective optimization. In aid of effective decision-making to the water managers, apart from developing effective multi-objective mathematical models, there is a greater necessity of providing efficient Pareto optimal solutions to the real world problems. This study proposes a swarm-intelligence-based multi-objective technique, namely the elitist-mutated multi-objective particle swarm optimization technique (EM-MOPSO), for arriving at efficient Pareto optimal solutions to the multi-objective water resource management problems. The EM-MOPSO technique is applied to a case study of the multi-objective reservoir operation problem. The model performance is evaluated by comparing with results of a non-dominated sorting genetic algorithm (NSGA-II) model, and it is found that the EM-MOPSO method results in better performance. The developed method can be used as an effective aid for multi-objective decision-making in integrated water resource management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a detailed analysis of a model for military conflicts where the defending forces have to determine an optimal partitioning of available resources to counter attacks from an adversary in two different fronts in an area fire situation. Lanchester linear law attrition model is used to develop the dynamical equations governing the variation in force strength. Here we address a static resource allocation problem namely, Time-Zero-Allocation (TZA) where the resource allocation is done only at the initial time. Numerical examples are given to support the analytical results.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper develops a model for military conflicts where the defending forces have to determine an optimal partitioning of available resources to counter attacks from an adversary from n different fronts. The problem of optimally partitioning the defending forces against the attacking forces is addressed. The Lanchester square law model is used to develop the dynamical equations governing the variation in force strength. Two different allocation schemes-Time-ZeroAllocation (TZA) and Continuous Constant Allocation (CCA) are considered and the optimal solutions for both are obtained analytically. These results generalize other results available in the literature. Numerical examples are given to support the analytical results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a generalized adaptive time-dependent density matrix renormalization-group (DMRG) scheme, called the double time window targeting (DTWT) technique, which gives accurate results with nominal computational resources, within reasonable computational time. This procedure originates from the amalgamation of the features of pace keeping DMRG algorithm, first proposed by Luo et al. [Phys. Rev. Lett. 91, 049701 (2003)] and the time-step targeting algorithm by Feiguin and White [Phys. Rev. B 72, 020404 (2005)]. Using the DTWT technique, we study the phenomena of spin-charge separation in conjugated polymers (materials for molecular electronics an spintronics), which have long-range electron-electron interactions and belong to the class of strongly correlated low-dimensional many-body systems. The issue of real-time dynamics within the Pariser-Parr-Pople (PPP) model which includes long-range electron correlations has not been addressed in the literature so far. The present study on PPP chains has revealed that, (i) long-range electron correlations enable both the charge and spin degree of freedom of the electron, to propagate faster in the PPP model compared to Hubbard model, (ii) for standard parameters of the PPP model as applied to conjugated polymers, the charge velocity is almost twice that of the spin velocity, and (iii) the simplistic interpretation of long-range correlations by merely renormalizing the U value of the Hubbard model fails to explain the dynamics of doped holes/electrons in the PPP model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we use reinforcement learning (RL) as a tool to study price dynamics in an electronic retail market consisting of two competing sellers, and price sensitive and lead time sensitive customers. Sellers, offering identical products, compete on price to satisfy stochastically arriving demands (customers), and follow standard inventory control and replenishment policies to manage their inventories. In such a generalized setting, RL techniques have not previously been applied. We consider two representative cases: 1) no information case, were none of the sellers has any information about customer queue levels, inventory levels, or prices at the competitors; and 2) partial information case, where every seller has information about the customer queue levels and inventory levels of the competitors. Sellers employ automated pricing agents, or pricebots, which use RL-based pricing algorithms to reset the prices at random intervals based on factors such as number of back orders, inventory levels, and replenishment lead times, with the objective of maximizing discounted cumulative profit. In the no information case, we show that a seller who uses Q-learning outperforms a seller who uses derivative following (DF). In the partial information case, we model the problem as a Markovian game and use actor-critic based RL to learn dynamic prices. We believe our approach to solving these problems is a new and promising way of setting dynamic prices in multiseller environments with stochastic demands, price sensitive customers, and inventory replenishments.